Center of Gravity PSO for Partitioning Clustering
نویسندگان
چکیده
This paper presents the local best model of PSO for partition-based clustering. The proposed model gets rid off the drawbacks of gbest PSO for clustering. The model uses a pre-specified number of clusters K. The LPOSC has K neighborhoods. Each neighborhood represents one of the clusters. The goal of the particles in each neighborhood is optimizing the position of the centroid of the cluster. The performance of the proposed algorithms is measured using adjusted rand index. The results is compared with k-means and global best model of PSO. Keywords— Clustering, PSO, Swarm Intelligence, Unsupervised Learning, Data mining
منابع مشابه
A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملOPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملA PSO Optimized Layered Approach for Parametric Clustering on Weather Dataset
Clustering is the process to present the data in an effective and organized way. There are number of existing clustering approaches but most of them suffer with problem of data distribution. If the distribution is non linear it gives impurities in clustering process. The propose work is about to improve the accuracy of such clustering algorithm. Here we are presenting the work on time series or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.00997 شماره
صفحات -
تاریخ انتشار 2017